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Synopsis 
Present methods of correcting instrument spreading (resolution correction) in GPC are 

either too cumbersome to use or inaccurate when the correction is large. Two new 
methods which are both accurate and simple to use are presented in this work. The 
first method using the technique of Fourier analysis is more general and can be used to 
correct non-Gaussian instrument spreading. The second method using a fourth-degree 
polynomial requires a Gaussian instrument spreading function. The instrument- 
spreading function may vary with respect to the elution volume in both methods. 

In trodue tion 

The problem of instrument spreading in gel-permeation chromatography 
(GPC) has been recognized for some time. To attain the ultimate preci- 
sion, one must correct this spreading from any GPC chromatograms. 
Currently the resolution, hence the precision, of GPC improves with the 
lengthening of the column used. Longer columns require longer elution 
times. If the effect of instrument spreading is corrected then equivalent 
results can be obtained from shorter columns and hence with shorter 
elution times. When results from different GPC instruments are com- 
pared, failure to correct for instrument spreading may lead to inconsisten- 
cies. 

The mathematical expression relating the experimental chromatogram, 
f(v), the true chromatogram, w(y), and the function g ( v )  describing the 
instrument spreading can be represented by the integral equation’ 

f (v> = J-+; g(v  - ? / ) 4 / ) d Y  (1) 

The function g may or 

One method of solving eq. (1) is by approximating it by a set of linear 
These equations are then solved by linear program- 
The results have been found satisfactory but excessive 

A second method is by fitting the chro- 

where v and y both represent the elution volume. 
may not vary with respect to y .  

algebraic equations. 
ming on a computer. 
computation time is required. 
matogram, f(v), with a polynomial of the form 

-7- 1 6 3  
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where q, vo, and U ,  are adjustable coefficients and n is the degree of the 
polynomial. The true chromatograni is representable by a similar poly- 
nomial. If g ( v )  is constant over the range of v and representable by a 
Gaussian distribution function, then an analytical solution for w(y) can be 
found. This method was found to be practical for many experimental 
chromatograms.2 Unfortunately, not all chromatograms can be fitted by 
a polynomial of reasonable size. For chromatograms which contain more 
than one peak, the use of a constant g function for the entire range is 
unsatisfactory. The chromatograms must then be subdivided into parts 
to obtain suitable solutions. 

Hess and Kratz3 reported a method similar to the first approach but they 
used the conventional matrix method for the solution of the algebraic 
equations. The matrices involved are, however, often ill ~ondi t ioned.~ 
Smith5 and also Pickett6 used methods of trial and error. Both of their 
methods require large computer storage space and long computation time. 

More recently, Pierce and Armonas' used the method of Fourier trans- 
form and obtained a solution for eq. (1). Their method treated the chro- 
matogram a point a t  a time, and hence a different g function can be used for 
each point on the chromatogram. But because longer-range interactions 
between the g and w functions are approximated by the derivatives of the 
chromatogram at  the point in question, the results are inaccurate if the 
instrument spreading is large. A similar point-to-point approach using 
Taylor's expansion method has been proposed by Aldhouse and Stanford.* 
Derivatives of the chromatograms are again required for the calculation. 
The shortcomings of the method of Pierce and Armonas are likely to be 
retained. These two methods, however, are fast and, as stated before, can 
accommodate the situation where a variable g function is required. New 
methods with these advantages but with higher degrees of accuracy are 
therefore desired in treating practical GPC data. In  this report two such 
methods are described. 

Fourier- Analysis Method 

Stokess has used a Fourier-analysis method to correct the effect of 
instrument spreading on x-ray diffraction data. A similar approach can 
be used for GPC as the basic integral equations for both cases are the same. 

Let F ,  G, and W represent the Fourier transforms of the functions f, g, 
and w, respectively. 
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~ ( k )  = ( I / ~ G )  J m  w(v)eikOdv 
- m  

The faltung theorem of Fourier transform gives 
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(5 )  

W(k)  = ( l / d % )  [F(k)/G(k)l (6) 

The true chromatogram w(v) is then obtained from the inverse transform of 
W(k)  

w(v) = (l/d%) J m  - m  W(k)e-iuk dk (7) 

The function F ( k )  can be separated into a real and an imaginary part, 
Fr(k) and F&). 

F ( k )  = Fr(k)  + iF,(Ic) (8) 
where 

Similar expressions can be written for G,(h) and G,(k). 
have 

From eq. (6), we 

W r ( k )  = [F,(k)Gr(k) + Ft(k)Ci (k) l /  { d%[G, ' ( k )  + G,'(k) I }  
wz(k)  = [Fi(k)Gr(k) - f'r(k)Gz(k) I /  { d2;[GT2(k)  + Gz'(k) 1 } 

(11) 

(12) 
The imaginary part of the inverse transform in eq. (7) is 

w,(v) = (l/d%) J:m[W,(k) cos (kv) - W r ( k )  sin (Icv) Jdk (13) 

Since W(-k) is the conjugate complex of W ( k )  and since the limit of integra- 
tion is from - OD to + 00, w,(v) vanishes. The inverse transform becomes 
then 

w(v) = ( I / ~ z )  J m  [w,(I~) cos (kv) + w,(I~)  sin (/iv)ldlc (14) 

111 the case when the instrument spreading can be expressed by the Gaussian 
distribution 

- m  

g(v )  = (h/&) e-h20* (15) 

~ ( k )  = C,(/r) = (1/42;) e-fL2'-r'L*) (16) 

or in eq. (15) is the square root of the h factor used in 

the imaginary part of G(k)  vanishes :md 

[Note: The h fa 
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Equation (14) then reduces to 

(kv) + Fi (k )  sin (ku)]dl i  (17) 

The integration in all these equations can be ca.rried out numerically. 
Thus, we can use the symmetrical Gaussian expression or any other expres- 
sion such as the unsymmetrical one proposed by Hess and Kratz3 to repre- 
sent the instrument spreading. 

When the Gaussian function is used the variation of g(v )  is given by a 
change in h in eq. (15). In  the computation the variation of g can be 
accounted for by simply using the appropriate h for each point of w(v) in 
eq. (17). For the more general case the proper transform function G(k)  
should be used. Both of these ways assume implicitly that the function g 
is still constant over the entire range of elution volume in calculating a point 
of w(v), although a different g is used to calculate a different point of w(v). 
Such an assumption will not likely to contribute much error to the results as 
an earlier report3 showed that for single-peak distributions, even a single g 
function would not introduce any appreciable error. This same assumption 
is used in the method of Pierce and Armonas' for the case of variable g. 

A computer program* has been written to implement the calculation 
for the case when the instrument spreading is Gaussian (eq. (15)]. In  the 
program the increments of numerical integration are set in a way that pre- 
calculated values of sines and cosines can be used. The data input are 
read from the chromatogram in equal increments, Awl of the elution volume. 
A new scale of v is then used in the numerical integration. This scale is 
symmetrical about the center of the chromatogram and Av is equivalent to 
a/30 on this new scale. The limits of integration for the transform equa- 
tions are automatically set by the total number of data points. The 
optimum number of points to be read from the chromatogram is between 
30 and GO. In  the inverse transform equation the increment, for k is set to 
be unity. The limits of the integration for the inverse transform theoreti- 
cally should be as large as possible to approximate the - 03 , + 03 limits in 
eq. (17). However, when too wide limits are used, terms approaching 
(03 X 0) are involved in the numerical integration. These terms may 
assume values which give unrealistic results. For typical experimental 
chromatograms we have found that the limits, [ -3O(Av)h]  to [+30(Av)h]  
fork is satisfactory. In  the case of variable h, h is the value at  the smallest 
elution volume. In  some cases the accuracy of the computation may be 
improved by using a different set of limits in the inverse transform. 

Polynomial Method 

In  this method we used a fourth-degree polynomial of the type given in 
eq. (2) to fit nine data points on the chromatogram at  a time. The chro- 
matogram is again best represented by 30 to GO points such that nine points 

* Program listings in Fortran for both methods are available upon request. 
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cover a significant portion of the chromatogram. The fitting of the points 
is done by the method of least squares. The computation is simplified by 
using data read from the chromatogram at equal increments of elution 
volume. The parameters q and uo of the polynomial [eq. ( 2 ) ]  are deter- 
mined by the method of moments. Let 

AS shown earlier' 

Q = PO/l/2(P2PO - P12) 

We then write a new polyriomial 

The computation is further simplified if z is substituted for u as the abscissa, 

z = (v-vj)/Av (22) 

where Au is the increment of u, and u j  is the elution volume of the center 
point of the nine points selected for making the fit by the polynomial. Such 
a transformation sets the nine values of z to be -4, -3, - 2 ,  -1, 0, +1, 
+2 ,  +3, +4. The polynomial now can be written as 

A 

The coefficients Ui are 

From the method of least squares, we have 

bo = fa(Uj) 

+4 

Z== - 4  
bl = 0.11433782 C f b ( ~ ) ~ :  - 0.008277217 C f b ( z ) ~ ~  

bz = 0.021265377 C ~ O ( Z ) Z ~  - 0.0014372073 C fb(.)z4 

bx = 0.000701459 Cfb(2)z3 - 0.008277217 C ~ ~ ( Z ) Z  
bq = 0.00010404323 C f b ( z ) ~ ~  - 0.0014372073 C fO(z)~' 

(25)  
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If we write the function w(y) as a similar polynomial 
4 

and if eq. (15) is used as the instrument spreading function then, as derived 
before,' 

p = hzq2/(l/h7L_q2) 

R4 = U4(1z/h2)4/Qo 

R3 = U ~ ( l ~ / h ~ ) ~ / Q o  

RZ = [U2(E2/hz)2/Qo] - 3R4/12 

Ri = [ U ~ ( l ~ / ~ ~ ) / & o l  - 3R3/(2Z2) 

Ro = (Uo/Qo) - 3R4/(414) - R2/(2Z2) 

where I = .\/p2 + h2 and Qo = &/I. 

The fit is carried out using every point from the chromatogram as a center 
point except for the first and the last three points. For these six points the 
value of to  are calculated from the polynomials using the 4th and the (n - 
4)th points as the center points. If h is a variable, then the appropriate h 
is used for each point. The assumption used implicitly for the method 
Fourier-Analysis for variable g function is applied in this method too. 

Evaluation of the Methods 

A fictitious two-peak distribution is used to test the correction methods. 

1 (28) w(y) = (0.325/&) [0.6e-(0.325)z(y-25)2 + 0 . 4 ~ -  (0 .325)z(~-31)z  

The instrument spreading is assumed to be Gaussian. The uncorrected 
chromatogram is obtained by substituting eq. (28) and eq. (15) into eq. (1) 
and integrating. 

(0.325) [O.Ge - (0.325)'h2(y -25p/ (  [0.325] '+h2)  f ( v )  = - 
d.lr( [0.32512 + h2) 

(29) + 0 . 4 ~  - (0.325)Zh'Yy- 31)2/( [0.325] 2+h2)] 

Figure 1 shows w(y) zLndf(v) and various corrected w(y) curves fromf(v) for 
the case where h = 0.4. The method of Pierce and Armonas cannot resolve 
the two peaks whereas both methods described in this report can. The 
Fourier analysis gives the best agreement with the original w(y) curve. 

Figure 2 shows correction by the present polynomial method and by the 
method of Pierce and Armonas for the case where h = 0.2,  a case of very 
poor resolution. Neither method resolved the two peaks. The present 
polynomial method did give a shoulder for the corrected chromatogram 
whereas the method of Pierce and Armonas failed to show any trace of a 
second peak. The correction by Fourier analysis was shown in Figure 3. 
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Fig. 1. Comparison of corrected chromatograms by various methods by using a con- 
stant Gaussian g function: (-) w(y), eq. (30); ( - - ) j ( u )  eq. (31), h = 0.4; (+-.-) 
corrected by Pierce and Armonas’ method; (0- - - -) corrected by the polynomial 
method; ( X  ) corrected by Fourier analysis. 

Fig. 2. Comparison of corrected chromatograms by the present polynomial method 
and by Pierce and Armonas’ method when instrument spreading is broad: (-) 
tu(y), eq. (30); ( - - ) j ( u ) ,  eq. (31), h = 0.2; (+-.-) corrected by Pierce and Armonas’ 
method; (0- - - -) corrected by the polynomial method. 

When the normal limits for the inverse transform were used, the peaks were 
not resolved but when the limits were enlarged to double the normal, a good 
agreement with the original w(y) was obtained. Such extension of the 
limits was possible because the f(v) function a t  two ends of the chromato- 
gram were described precisely by eq. (29). For experimental chromato- 
grams such extension would probably yield unrealistic values for w(y). 

The case for variable h is illustrated by examples shown in Figures 4 and 
5 .  The function f(v) is generated by numerical integration of eq. (1) by 
using values of h given by 

(30) h = o.msv2 + 0.004v + 0.02 
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Fig. 3. Correction of broad instrument spreading by the present Fourier analysis 
method: (-) w(y), eq. (30); (--) f ( u ) ,  eq. (31), h = 0.2; (+-.-) corrected by 
using normal limits of integration in the inverse transform; ( X )  corrected by using 
limits double the normal for integration in the inverse transform. 

This equation gives h = 0.278 at  v = 15 and h = 0.488 at  v = 40, a variation 
of h normally encountered in GPC columns. Figure 4 shows that the 
present polynomial method gives a better agreement with the original 
w(y) than the method of Pierce and Armonas. Figure 5 shows that the 
normal limits for the inverse transform in Fourier analysis again yield 
unsatisfactory results. When the limits were extended to double the 
normal, excellent agreement with the original w(y) was obtained. 

In  all three examples given above, the present methods are shown to be 
more accurate than the method of Pierce and Armonas. The differentia- 

Fig. 4. Comparison of corrected chromatograms by t,he present polynomial method 
and by Pierce arid Armonas’ method when inst,rnment spreading varies with the elution 
volume: (-) w(y), eq. ( 3 0 ) ;  (--) S(V)  by using h = O.OO0OXv2 + 0.004~ + 0.02; 
(+- . -) corrected by Pierce and Armonas’ method; (a-- - -) corrected by the present 
polynomial metshod. 
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Fig. 5. Correction by the present Fourier analysis method when instrument spread- 
ing varies with the elution volume: (-) w(y), eq. (30); (--) f ( v )  by using h = 
0 , 0 0 0 0 8 ~ ~  + 0.004~ + 0.02; ( f- . -) corrected by using normal limits of integration in 
the inverse transform; ( X-- - -) corrected by using limits double the normal for the 
integration in the inverse transform. 

tion used in the latter method for the first two examples was obtained 
analytically. Thus, the uncertainties of numerical differentiation were 
not even involved. The computation time on a Burroughs B5500 computer 
using the programs written for the present methods was less than five 
seconds. 

The program written for Fourier analysis can be easily enlarged to 
include the numerical integration for the transform of non-Gaussian g 
functions. As shown in Figures 3 and 5, when the instrument spreading is 
large, the limits for the inverse transform must be extended for accurate 
results. Most of the chromatograms cannot be read accurately enough at  
the ends to allow this extension. It is conceivable, however, that methods 
can be used to smooth the experimental data a t  the ends of the chromato- 
gram so that the limits for the inverse transform may be extended. Even 
when techniques for data smoothing are included, the method of Fourier 
analysis for non-Gaussian instrument spreading is likely to be more accurate 
and far more simple to use than the other methods for treating non-Gaus- 
sian instrument spreading. 

When the instrument spreading is Gaussian, the comparisons indicate 
that the present polynomial method is adequate for most of the practical 
chromatograms. The example shown in Figure 2 has exceptionally broad 
instrument spreading which is not often encountered in present-day GPC. 
There is also the possibility of using higher degree polynomials or larger 
sectors of the chromatogram in  this method. We have not tested any other 
combinat ion. 

Recently, Ralke and Hamielec'" have mentioned the problem of oscilla- 
tion induced artificially by the various methods of correction for instrument 
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spreading. In  fact, the occurrence of such oscillation in most cases is not 
induced by the correction calculation itself but rather by the inability of 
the correction method to distinguish between the noise in the chromatogram 
and the truly statistically significant data. Moreover, no matter what one 
assumes for the instrument spreading function, the GPC instrument will 
always behave slightly different than the ideal shape of the assumed func- 
tion. This deviation leads also to oscillation when the breadth of the 
correction function is near that of the chromatogram, i.e., in the case when 
the correction is large or the chromatogram peaks are narrow. Any 
correction procedure that contains some feature to smooth out chromato- 
gram noise will therefore encounter less difficulty in the problem of oscilla- 
tion. I n  our previously developed polynomial method,' the problem of 
oscillation is not severe because the polynomials serve to smooth out some of 
the chromatogram noises. Such oscillation if it occurs, can also be damped 
out in that method by using a polynomial of degree lower than that which 
gives the best fit to the chromatogram. The current polynomial method 
uses the method of least squares and therefore should be even less likely to 
enter into oscillation and our experience in using the method has born this 
out. Nevertheless, for some very narrow-peak distributions, difficulties of 
this kind are still unavoidable. 

Dr. Steven W. Provencher of Dartmouth College, Hanover, New Hampshire pointed 
out to us the possibility of using Fourier analysis for odd-shaped chromatograms. Mrs. 
Bryce D. Troyer kindly translated the computer programs for both methods into 
Fortran. 
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